
A Deep Dive Into
SameSite Cookies
What They Are and Why They Matter

Stephen Rees-Carter
twitter.com/valorin
Senior Developer

at Defiant / WordfenceNDC Sydney 2020

https://tools.ietf.org/html/draft-west-first-party-cookies-00

https://tools.ietf.org/html/draft-west-first-party-cookies-00

Timeline

● October 2014
○ “First-Party” cookie attribute proposed

● February 2015
○ Attribute changed to “First-Party-Only”

● January 2016
○ Attribute changed to “SameSite”

● April 2016
○ Attribute option values added:

SameSite=Strict

SameSite=Lax

SameSite=None

● May 2016
○ Google Chrome 51 adds support

CSRF
Cross Site Request Forgery

Step #1
POST https://mysite.com/account

password=correct+horse+battery+staple

User updates their own password:

mysite.com

CSRF
Cross Site Request Forgery

Evil Hacker updates user’s password:
Step #3
(via Javascript sent to the user’s browser)
POST https://mysite.com/account
password=evil+hacker+passwd

Step #1
(Trick the user into visiting)
https://anothersite.com

Step #2
GET https://anothersite.com

mysite.com

CSRF
Defending Against Attack

1. CSRF tokens or Nonces
a. Required in all requests
b. Known-secret based protection

2. Verify Origin or Referer header
a. Cannot be modified by client

3. Client-side cryptographic magic
a. Some apps work in specific ways

+ SameSite Cookies!

SameSite cookie attribute

Set-Cookie: app_session=eyJpdiI6ImNQWTBCU3VERW...;

Set-Cookie: app_session=eyJpdiI6ImNQWTBCU3VERW...; SameSite=Strict

Set-Cookie: app_session=eyJpdiI6ImNQWTBCU3VERW...; SameSite=None; Secure

Set-Cookie: app_session=eyJpdiI6ImNQWTBCU3VERW...; SameSite=Lax

SameSite=Strict
Cross-Site/Third-Party Requests

Embedded Content
<iframe>

❌

Unsafe Requests
POST/PUT/DELETE/…

❌

Safe Requests
GET/HEAD

❌

Blocks all CSRF attacks (when cookies are required)

SameSite=None; Secure
Cross-Site/Third-Party Requests

Embedded Content
<iframe>

✔

Unsafe Requests
POST/PUT/DELETE/…

✔

Safe Requests
GET/HEAD

✔

(HTTPS Only)

Blocks no CSRF attacks

SameSite=None

Will not be sent on any request, HTTPS or HTTP.

❌

(Without “Secur
e”)

SameSite=Lax
Cross-Site/Third-Party Requests

Embedded Content
<iframe>

❌

Unsafe Requests
POST/PUT/DELETE/…

❌

Safe Requests
GET/HEAD

✔

Blocks CSRF attacks on “unsafe” requests.

Story Time...

https://blog.chromium.org/2019/05/improving-privacy-and-security-on-web.html

https://blog.chromium.org/2019/10/developers-get-ready-for-new.html

https://blog.chromium.org/2020/02/samesite-cookie-changes-in-february.html

https://blog.chromium.org/2020/04/temporarily-rolling-back-samesite.html

https://twitter.com/giannidhooge/status/1266094292155592704

May 28th...

Timeline

● October 2014
○ “First-Party” cookie attribute proposed

● February 2015
○ Attribute changed to “First-Party-Only”

● January 2016
○ Attribute changed to “SameSite”

● April 2016
○ Attribute options added:

SameSite=Strict

SameSite=Lax

SameSite=None

● May 2016
○ Google Chrome 51 adds support

● May 2019
○ Google Chrome proposes SameSite=Lax by

default in Chrome 77 (September 2019)

● June 2019
○ SameSite=Lax by default delayed until

Chrome 80 (February 2020)

● February 2020
○ Chrome 80 released, SameSite=Lax by

default rollout started

● April 2020
○ Rollout stopped due to COVID-19

● May 2020
○ Rollout announced for Chrome 84

(July 2020)

● July 2020
○ Rollout begins

● August 2020
○ Rollout complete 🎉

We’re not finished yet...

Wait a sec… this will break my Auth flow! 😡

Browser mysite.com

auth.com

User clicks “login” on mysite.com

Set CSRF Token and redirect User to auth.com

User authenticates at auth.com using single-sign-on

Authenticated User redirected via POST to mysite.com with completed authentication tokens

Browser rejects CSRF cookie when visiting mysite.com
CSRF Cookie defaults to SameSite=Lax

and is rejected by the browser due to the
cross-site POST request from auth.com.

Note, the SameSite attribute is
not set on the CSRF token cookie.

(Example based from the widely used OpenID Connect authentication flow used by Azure Active Directory and Microsoft Account authentication.)

This should take less than 2 minutes.
Let’s default to “Lax+POST” and allow it (temporarily).

 mysite.com

 static.mysite.com

account.mysite.com

“Same-Site” domains

 github.io

valorin.github.io

laravel.github.io

“Cross-Site” domains

Subdomains of domains on the Public Suffix List (https://publicsuffix.org/) are considered “cross-site”.

Demo time...

What Option Do I Use?

● Use SameSite=Strict if…
○ User shouldn’t be automatically logged in
○ Actions must be performed over GET requests

● Use SameSite=None if…
○ POST requests or embedded content (<iframe>/) needed between third-party domains

● Use <nothing> if…
○ You like unexpected behaviour to confuse your users

● Otherwise, just use SameSite=Lax.

Is
SameSite=Lax by default

the answer?

Thank you!
Questions: #room-5

(Or feel free to DM me)

src.id.au/samesite

stephen@hey.com · twitter.com/valorin

